Name

pow, powf, powl — power functions

Synopsis

#include <math.h>
double pow( double x,
  double y);
 
float powf( float x,
  float y);
 
long double powl( long double x,
  long double y);
 
[Note] Note
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
powf(), powl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L || /* Since glibc 2.19:
*/ _DEFAULT_SOURCE || /* Glibc versions <= 2.19:
*/ _BSD_SOURCE || _SVID_SOURCE
[Note] Note

Link with −lm.

DESCRIPTION

These functions return the value of x raised to the power of y.

RETURN VALUE

On success, these functions return the value of x to the power of y.

If x is a finite value less than 0, and y is a finite noninteger, a domain error occurs, and a NaN is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL, HUGE_VALF, or HUGE_VALL, respectively, with the mathematically correct sign.

If result underflows, and is not representable, a range error occurs, and 0.0 is returned.

Except as specified below, if x or y is a NaN, the result is a NaN.

If x is +1, the result is 1.0 (even if y is a NaN).

If y is 0, the result is 1.0 (even if x is a NaN).

If x is +0 (−0), and y is an odd integer greater than 0, the result is +0 (−0).

If x is 0, and y greater than 0 and not an odd integer, the result is +0.

If x is −1, and y is positive infinity or negative infinity, the result is 1.0.

If the absolute value of x is less than 1, and y is negative infinity, the result is positive infinity.

If the absolute value of x is greater than 1, and y is negative infinity, the result is +0.

If the absolute value of x is less than 1, and y is positive infinity, the result is +0.

If the absolute value of x is greater than 1, and y is positive infinity, the result is positive infinity.

If x is negative infinity, and y is an odd integer less than 0, the result is −0.

If x is negative infinity, and y less than 0 and not an odd integer, the result is +0.

If x is negative infinity, and y is an odd integer greater than 0, the result is negative infinity.

If x is negative infinity, and y greater than 0 and not an odd integer, the result is positive infinity.

If x is positive infinity, and y less than 0, the result is +0.

If x is positive infinity, and y greater than 0, the result is positive infinity.

If x is +0 or −0, and y is an odd integer less than 0, a pole error occurs and HUGE_VAL, HUGE_VALF, or HUGE_VALL, is returned, with the same sign as x.

If x is +0 or −0, and y is less than 0 and not an odd integer, a pole error occurs and +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL, is returned.

ERRORS

See math_error(7) for information on how to determine whether an error has occurred when calling these functions.

The following errors can occur:

Domain error: x is negative, and y is a finite noninteger

errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is raised.

Pole error: x is zero, and y is negative

errno is set to ERANGE (but see BUGS). A divide-by-zero floating-point exception (FE_DIVBYZERO) is raised.

Range error: the result overflows

errno is set to ERANGE. An overflow floating-point exception (FE_OVERFLOW) is raised.

Range error: the result underflows

errno is set to ERANGE. An underflow floating-point exception (FE_UNDERFLOW) is raised.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
pow(), powf(), powl() Thread safety MT-Safe

CONFORMING TO

C99, POSIX.1-2001, POSIX.1-2008.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS

On 64-bits, pow() may be more than 10,000 times slower for some (rare) inputs than for other nearby inputs. This affects only pow(), and not powf() nor powl().

In glibc 2.9 and earlier, when a pole error occurs, errno is set to EDOM instead of the POSIX-mandated ERANGE. Since version 2.10, glibc does the right thing.

If x is negative, then large negative or positive y values yield a NaN as the function result, with errno set to EDOM, and an invalid (FE_INVALID) floating-point exception. For example, with pow(), one sees this behavior when the absolute value of y is greater than about 9.223373e18.

In version 2.3.2 and earlier, when an overflow or underflow error occurs, glibc's pow() generates a bogus invalid floating-point exception (FE_INVALID) in addition to the overflow or underflow exception.

SEE ALSO

cbrt(3), cpow(3), sqrt(3)

COLOPHON

This page is part of release 4.07 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man−pages/.


  Copyright 1993 David Metcalfe (davidprism.demon.co.uk)
and Copyright 2008, Linux Foundation, written by Michael Kerrisk
    <mtk.manpagesgmail.com>

%%%LICENSE_START(VERBATIM)
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Since the Linux kernel and libraries are constantly changing, this
manual page may be incorrect or out-of-date.  The author(s) assume no
responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.  The author(s) may not
have taken the same level of care in the production of this manual,
which is licensed free of charge, as they might when working
professionally.

Formatted or processed versions of this manual, if unaccompanied by
the source, must acknowledge the copyright and authors of this work.
%%%LICENSE_END

References consulted:
    Linux libc source code
    Lewine's _POSIX Programmer's Guide_ (O'Reilly & Associates, 1991)
    386BSD man pages
Modified 1993-07-24 by Rik Faith (faithcs.unc.edu)
Modified 1995-08-14 by Arnt Gulbrandsen <agulbratroll.no>
Modified 2002-07-27 by Walter Harms
(walter.harmsinformatik.uni-oldenburg.de)